

Proteoglycomics tools applied to the screening and characterization of combined congenital disorders of glycosylation: when "omics" and "clinics" are going together

Arnaud Bruneel^{1,2*}, Aurélie Hesbert¹, Florence Habarou¹, Damien Dupont¹, Willy Morelle³, Christine Barnerias⁴, Pascale de Lonlay⁵, Valérie Drouin-Garraud⁶, Geneviève Durand^{1,2}, Nathalie Seta¹

¹ AP-HP, Metabolic & Cellular Biochemistry, AP-HP, Bichat Hospital, Paris, France ² Biochemistry & Cellular Biology, UPRES JE 2493, Paris XI University, Châtenay-Malabry, France

³UMR CNRS/USTL 8576, Université des Sciences et Technologies de Lille 1.

⁴ Clinical Genetic department, AP-HP, Necker-Enfants Malades Hospital, Paris, France.

⁵Clinical Metabolism department, AP-HP, Necker-Enfants Malades Hospital, Paris, France.

⁶ Clinical Genetic department, Rouen Hospital, France

CONTEXT: In the field of congenital disorders of glycosylation (CDG), diseases combining abnormalities in both O- and N-glycosylation of proteins constitute arising novel entities. Defects in subunits of the conserved oligomeric Golgi (COG) protein complex have been shown to be involved in an important part of previously unsolved combined CDG; furthermore, recent studies revealed that autosomal recessive cutis laxa type II (a rare cutaneous congenital disease) could also be associated with such glycosylation defects in relation with mutations in the *ATP6V0A2* gene encoding the α 2 subunit of the V₀-H⁺ ATPase protein.

SAMPLES:

More than 300 serum samples from patients with clinical suspicion of CDG were screened for *O*- and *N*-glycan biosynthesis defects.

METHODS:

 \rightarrow Two dimensional gel electrophoresis (2-DE) and Western-blot

- N-glycoproteins: Tranferrin
- *O*-glycoproteins: apolipoprotein C-III (apoC-III)
- → Mass spectrometry (MALDI-TOF)
- N- and O-glycans released from serum glycoproteins
- PNGase F digestion for N-glycans
- reductive β -elimination for *O*-glycans
- -derivatization by permethylation

→ *ATP6V0A2* DNA sequencing

RESULTS:

By comparison with controls (normal % values: apoC-III₀ < 5%; apoC-III₁ : 40-75%; apoC-III₂: 25-60%, Fig.1-A), 2-DE of apoC-III showed abnormalities in O-glycans from five sera: two with "apoC-III₀" patterns (increased % of the asialylated apoC-III isoforms, Fig.1-B); one with "apoC-III₁" pattern (increased % of the monosialylated isoform, Fig. 1-C); two with "apoC-III₂" patterns (increase % of the bi-sialylated isoform, Fig. 1D). 2-DE of transferrin also showed N-glycans abnormalities (CDG-IIx) in patients with apoC-III₀ and apoC-III₁ patterns (Fig. 2). All glycomic data were corroborated at the overall level using MALDI-TOF MS of *O*- and *N*-glycans released from serum glycoproteins (Fig.3). DNA sequencing of *ATP6V0A2* in the patient with apoC-III₁ pattern (and with cutis laxa) showed an homozygous G deletion leading to a stop codon (Fig.4) and which was retrieved at the heterozygous state in the parents. Furthermore, patients with apoC-III₀ patterns are clinically highly suggestive of COG subunits congenital defects.

CONCLUSION:

When combined with clinical findings, 2-DE of apoC-III and transferrin coupled to MALDI-TOF MS analysis of serum glycans are powerful and complementary tools for the screening and the characterization of CDG combining *N*- and *O*-glycans biosynthesis defects.

Figure 1: 2-DE of apoC-III

C) Abnormal "apoC-III₁" pattern

D) Abnormal "apoC-III2" pattern

Figure 2: 2-DE of Transferrin

B) Abnormal transferrin pattern (CDG-IIx)

C) Abnormal transferrin pattern (CDG-IIx)

D) Normal transferrin pattern

Figure 3: MALDI-TOF MS of serum *N*- (left) and *O*-glycans (right) from patient with apoC-III₁ pattern and CDG-IIx transferrin pattern

Figure 4: ATP6V0A2 DNA sequencing (patient with apoC-III, pattern)

